
UCRL-TR-202335

An Implicit Algorithm for the
Numerical Simulation of
Shape-Memory Alloys

C. Jannetti, R. Becker, J. Stolken, J. Bassani

February 13, 2004



Disclaimer 
 

 This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process 
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any 
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or the University of California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or the University of California, 
and shall not be used for advertising or product endorsement purposes. 

 
 
 

 

 This work was performed under the auspices of the U.S. Department of Energy by University of 
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. 
 



1

An Implicit Algorithm for the Numerical Simulation of Shape -Memory Alloys

Carl Jannetti1, Rich Becker2, James Stölken2, and John Bassani1

1Department of Mechanical Engineering and Applied Mechanics,
University of Pennsylvania

2New Technologies Engineering Division,
Lawrence Livermore National Laboratory

August 12, 2003

Abstract
Shape-memory alloys (SMA) have the potential to be used in a variety of interesting 
applications due to their unique properties of pseudoelasticity and the shape-memory effect. 
However, in order to design SMA devices efficiently, a physics-based constitutive model is 
required to accurately simulate the behavior of shape-memory alloys. The scope of this work is 
to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. 
(2003), to handle large-scale polycrystalline simulations. The constitutive model is 
implemented within the finite-element software ABAQUS/ Standard using a user defined 
material subroutine, or UMAT. To improve the efficiency of the numerical simulations, so that 
polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm 
has been implemented to integrate the constitutive equations. Using an implicit integration 
scheme increases the efficiency of the UMAT over the previously implemented explicit 
integration method by a factor of more than 100 for single crystal simulations. This work was 
performed under the auspices of the U.S. Department of Energy by the University of California, 
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

1. Introduction

Shape-memory alloys (SMA) exhibit unique macroscopic properties that result from a 

reversible solid-to-solid diffusionless phase transformation. The macroscopic properties that 

result from this microstructural rearrangement are pseudoelasticity and the shape-memory effect. 

These properties make shape-memory alloys excellent candidates for a variety of applications. 

At the present time, SMAs are used in many applications such as eyeglass frames, arterial stents, 

as well as sensors and actuators.

The scope of the work presented here is to use the three-dimensional, inelastic, 

continuum-level constitutive description of the phase transformation that occurs in shape-

memory alloys developed by Jannetti et. al. (2003) to simulate polycrystal SMA specimens. To 

perform numerical simulations, the constitutive model had been previously implemented in 

ABAQUS/Standard (2003) using a user defined material behavior subroutine (UMAT). 
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However, the previous implementation of the UMAT was not sufficient to perform large-scale 

polycrystal simulations due to the small time steps required as a result of the explicit integration 

scheme employed to integrate the constitutive equations. The work described here is the 

implementation of an implicit time integration scheme that allows for much larger time steps to 

be taken and larger scale simulations to be performed. The ability to perform large-scale 

polycrystal simulations of SMA specimens is important so that SMA devices can be efficiently 

and optimally designed.

The phase transformation in shape-memory alloys, which is described by the constitutive 

model and simulated by the UMAT, is similar to the transformation that occurs when high 

temperature steel is quenched. The fine-scale rearrangement that occurs involves changing from 

an austenite crystal structure to a finer microstructure, referred to as martensite. The 

pseudoelastic and shape-memory effect exhibited macroscopically by the SMAs is a result of this 

solid-to-solid phase transformation that occurs at the microscale level. 

Pseudoelasticity refers to the ability of the shape-memory alloy to be capable of full 

strain and structure recovery due to a complete reversal of the phase transformation from 

martensite to austenite. Nevertheless, this typically involves energy dissipation, i.e. hysteresis. 

Pseudoelasticity occurs when the SMA specimen is subjected to a loading-unloading cycle, 

without inducing any plastic deformation, while the temperature of the specimen is above the 

austenite finish temperature. Typical shape-memory alloy specimens may be subjected to 

uniaxial strains on the order of seven to ten percent and still exhibit full strain and structure 

recovery upon unloading. While the pseudoelastic process recovers the deformation, the cycle 

involves dissipation, as evidenced by the hysteresis loop in the stress-strain curve. The 

dissipation is related to the movement of interfaces between various phases of the material.

The shape-memory effect is due to the reverse transformation, which is due in part to the 

reversible nature of the self-accommodation by twining rather than slip, which occurs when the 

specimen is heated. When the a SMA specimen is deformed at a temperature below the austenite 

start temperature and above the martensite finish temperature, upon unloading the specimen will 

appear to be permanently deformed. However, if the specimen is subjected to a thermal cycle 

that includes heating the material to a temperature above the austenite finish temperature, the 

specimen recovers its original shape.



3

The remainder of this document is outlined as follows:  Section 2 briefly outlines the 

constitutive model used to describe the behavior of the shape-memory alloys, Section 3 describes 

the new implicit time integration scheme that is used to adapt the UMAT for large-scale 

simulations, Section 4 lists the future work to de done, Appendix I contains the UMAT source 

code, and Appendix II contains a sample ABAQUS/ Standard input file.

2. Constitutive Model

The constitutive behavior of SMAs that is used in the simulations is the model developed 

by Jannetti et. al. (2003). This model is a thermodynamically-based, three-dimensional, finite 

strain, continuum-level description of the material behavior of the SMAs. This model was 

developed following Rice’s (1971, 1975) notion that the rate of any microscale rearrangement is 

taken to be dependent on the thermodynamic force conjugate to the rearrangement. The 

following subsections describe the major points of the constitutive model.

2.1 Finite Strain Kinematics

To describe the finite deformation, let X  be the position vector of some material point in 

the reference configuration and let ( )t,Xxx =  denote the position vector of that point in the 

current or deformed configuration. Let F be the be the deformation gradient such that

d d=x F X . (1) 

Since the deformation of shape-memory alloys is due to both elastic deformation and 

deformation due to the phase transformation, a multiplicative decomposition of the deformation 

gradient is used

e trF = F F , (2) 

where eF  is the deformation associated with the elastic distortion of the lattice and trF    is the 

deformation associated with the phase change.

2.2 RVE

To motivate the remaining sections on the kinematics of the phase transformation, a 

description of the material microstructure is necessary. Because the constitutive model is 

continuum level in nature, material points are assumed to have statistically homogeneous 

properties. On the other hand, at microscopic scales the underlying material will have spatially 
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varying microstructure. To resolve this issue the notion of a representative volume element is 

used to characterize the microstructure, where the RVE is statically representative of the material 

neighborhood of that point, i.e. statistically homogeneous. In this constitutive model, the RVE is 

a region that may contain several phases of martensite embedded in austenite. The RVE can be 

thought of as a multi-phase composite with specific volume fractions that evolve with 

deformation. The volume fractions of the phases are denoted by αξ , where 0α =  denotes the 

austenite phase and 1,...,Nα = denotes the transformation systems of martensite, where 

0

1

1 1
Nα α
α

ξ ξ ξ=

=

= − ≡ −∑ , (3) 

with ξ  denoting the total volume fraction of the RVE (the vector of αξ ’s is denoted by ξ ). The 

following constraints apply to (3) 

 0 1 and 0 1 for 0,...,Nαξ ξ α≤ ≤ ≤ ≤ = . (4) 

Given the properties of the individual phases, the effective elastic response of such an 

RVE clearly depends on the volume fractions, αξ , when the corresponding elastic properties of 

each phase are different. The homogenized elastic properties of the RVE is determined using a 

Reuss estimate (Reuss, 1929) as

( )
1

eff (a) (m)

1

1
N αα
α

ξ ξ
−

=

 = − +  ∑% % %C M M , (5) 

where ( )eff ξ%C  is the effective tensor of elastic moduli, (a)%M  denotes the elastic compliance of the 

austenite, and (m)α%M denotes the elastic compliance of each of the martensite transformation 

systems.

2.3 Phase Transformation Kinematics

If one considers the RVE as a multi-phase composite composed of austenite and several 

phases of martensite, each phase contributes to the overall deformation. Using classic averaging 

results for multi-phase composites, the volume average of the transformation deformation 

gradient, neglecting elastic deformation, can be written as

tr
0

1

N α α
α
ξ

=
= +∑F γΙΙΙΙ , (6) 
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where 0
αγ  is the second order tensor corresponding to the deformation associated with the 

transformation system α , and ΙΙΙΙ  is the second order identity tensor. The 0
αγ ’s are expressed in 

terms of the unit normal to the habit plane (austenite-martensite interface), denoted by 0
αm , and 

the unit average transformation direction, denoted by 0
αb , and the magnitude of the 

transformation strain, Tγ . For the case of NiTi,   

0 0 0T
α α αγ= ⊗b mγγγγ (7) 

(see e.g. James and Hane, 2000).

2.4 Thermodynamic Considerations

The framework of the thermodynamics with internal variables, as used by Rice (1971), to 

describe inelastic behavior resulting from plastic behavior of metals, is applied to describe the 

inelastic behavior of shape-memory alloys resulting from the phase transformation. The internal 

variables in this thermodynamic framework are the volume fractions of the constituent phases of 

the RVE. The thermodynamic state variables which describe the state of the system are the 

Green-Lagrange strain, E , the temperature, θ , and the internal variables, αξ . Using these 

variables the change in internal energy, u , can be written as

ηθξ α

α

α &&&& +−⋅= ∑
=

N

fu
1

ES , (8) 

where η  is the entropy per unit volume, ⋅S Ε&  is the work increment per unit volume, and f α  is 

the force thermodynamically conjugate to the microstructural rearrangement. The Helmholtz free 

energy is written as 

uψ θη= − , (9) 

where ( ), ,ψ ψ θ= Ε ξξξξ . The stress, f α , and entropy are defined in terms of the free energy as

, ,f α α
ψ ψ ψηξ θ
∂ ∂ ∂= = − = −∂ ∂ ∂S

E
.                      (10)

It is useful to express the Helmholtz energy as a function of the elastic Green-Lagrange 

strain, where the elastic strain is defined as 

( )Te e e1 2= −E F F I% . (11)
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The approximation to the free energy using the expression for the elastic strain is written as 

( ) ( )e tr e T
T

1T T

1
ˆ , , log

2

N

c α
α

λθψ θ θ ξ θ θθ θ=
= ⋅ − − −∑E ξ F S E%% % , (12)

where S%  is the second Piola-Kirchhoff stress in the intermediate configuration, which can be 

written as

( )e

tr
e

ˆ , ,ψ θ∂
∂
E

S = F
E

ξξξξ%
%

% . (13)

It is assumed that if the elastic deformation from the intermediate configuration to the current 

configuration is “small”, then S%  can be written as1

( )eff eξ= ⋅S E%% %C . (14)

Following Rice’s (1971) framework and introducing the finite strain kinematics in (2), 

the multi-phase composite kinematics in (6), and the definition of the free energy in (12), the 

form for the force that is thermodynamically conjugate to the phase transformation (which is also 

taken to be the driving force for the phase transformation) is written as2

( ) ( ) ( )T -1tr e e tr tr e eff e T
T

T

1

2
f α α

α
λ θ θξ θ

∂= ⋅ − ⋅ ⋅ − −∂0F F F S γ F F E E%% % %C . (15)

2.5 Inelastic Constitutive Relations for Kinetics

Kinetics refers to the description of the evolution of the phase transformation. The notion 

of a driving force can be used to describe the kinetics of the phase transformation. A simple 

approach in modeling the nucleation is to assume that there is a known critical value of the 

driving force, crf α , such that the forward transformation occurs when crf fα α≥ , and the reverse 

transformation occurs when crf fα α≤ − . 

1 Note that the product ik kjA BAB =  and the product A Bij ij⋅ =A B .
2 Equation (15) written in index notation is 

( ) ( )1tr e e tr tr e eff e T
0, T

T

1

2ji jk kl im ml ij ijkl klf F F S F E Eα α
α

λγ θ θξ θ
− ∂= − − −∂F F %% % %C
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The approach taken to model the evolution of the internal variables using a rate-

dependent approach such that the rate at which the transformation occurs is fully specified from 

the driving force. The equation that describes the transformation kinetics is

( ) 0
cr

sign

m

f
f

f

α
α α α

αξ ξ  
=    

& &  (16)

 where  αξ0  is a constant and m controls the rate sensitivity.

3. Numerical Modeling

In order for the UMAT to be used for large-scale Taylor (Taylor, 1938) type polycrystal 

simulations, an implicit time integration scheme is necessary so that relatively large time steps 

can be taken. Previously, an explicit integration scheme was used to integrate the constitutive 

equations within the UMAT. The explicit scheme required very small time steps, and therefore 

even small-scale problems required many iterations, making it impractical for large-scale 

simulations. What follows in this section is the description of the backward Newton implicit 

method used to compute the value of the changes in the volume fractions, ∆ αξ . See Appendix II 

for the source code that implements this integration scheme.

Before the integration scheme can be discussed, it is necessary to describe how the 

ABAQUS/Standard UMAT works. The input to the UMAT at time τ  is the deformation 

gradient at time τ , ( )τF , the deformation gradient at time t, ( )tF , and the stored set of solution 

dependent state variables, at time t: ( )tαξ  and ( )tr tF  (where t tτ ∆= + ). The required output 

from the UMAT is the Cauchy stress, ( )τT , and the updated state variables, ( )αξ τ  and ( )tr τF .

The implicit algorithm is as follows: enter the UMAT with ( )τF , ( )tF , ( )tr tF , and 

( )tαξ , and compute the elastic trial values of ( )tr τF  and ( )τS% . Then compute the potentially 

forward active transformation systems as those that satisfy

cr 0 1 0 1f fα α αξ ξ≥ ≤ < ≤ < , (17)

and the potentially reverse active transformation system as those that satisfy

cr 0 1 0 1f fα α αξ ξ≤ − < ≤ < ≤ . (18)
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If the number of potentially active systems is greater than zero, then compute the driving 

force, f α  given in (15) and the driving force based on the inverse of the kinetic equation, Kf α , 

where

( )
1/

cr
0

sign

m

Kf f
α

α α α
α
ξξ ξ

 
=    

&& & . (19)

The purpose of the implicit integration algorithm is to compute the correction the volume 

fraction change, c
α∆ξ , such that Kf fα α= . This condition is ensured by computing the correction 

to the volume fraction change by solving the equation

( )c
1

N
K

K

ff
f f

αα
αβ α α α

β β
β

δ ∆ξ∆ξ ∆ξ=

 ∂∂ − − − = 0 ∂ ∂ ∑ . (20)

The updated volume fractions are then computed as

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

1 c

/

i i

i

i

t

t

α α α

α α α

α α

∆ξ τ ∆ξ τ ∆ξ τ
ξ τ ξ ∆ξ τ
ξ τ ∆ξ τ ∆

−= +

= +

=&
, (21)

where i refers to the Newton iteration number. The Newton iteration continues until both of the 

following two constraints are satisfied

c err

errKf f

α

α α
∆ξ ≤
− ≤  (22)

After the Newton iteration has converged, the latest values of the volume fractions are 

used to update the values of ( )tr τF  and the Cauchy stress, ( )τT , and the analysis proceeds to 

the next time step. The implicit integration algorithm is outlined in the flow chart in Figure 1.

Implementing the Newton implicit time integration scheme reduces the number of time 

steps required to complete a simulation drastically. For example, during the simulation3 of a 

single crystal under a tensile (and compressive) loading-unloading cycle up to 7% strain (see 

Figure 2 for simulation results), the implicit scheme reduces the number of necessary time steps 

by a factor of more than 100. 

3 In this simulation: 3 3
0 10 ,  10MJ mcrfα αξ −= = , and 100m = .
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Figure 1: Flow chart of the implicit time integration scheme used in the ABAQUS/UMAT.
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Figure 2: Pseudoelastic response of a single crystal ([100] orientation) under uniaxial tension (green curve) and 

uniaxial compression (red curve) at 285 K.

These simulations were performed with implicit time integration and completed in 

approximately 70 times steps. This is a great improvement over the explicit scheme, which took 

approximately 10,000 time steps to perform the same calculation.

4. Future Work

Now that the implicit time integration scheme has been implemented, large-scale Taylor 

type (Taylor, 1938) polycrystal simulations can be performed. Plans for future work include 

using the implicit version of the UMAT to perform simulations on a thin walled NiTi tube. 

Tension, torsion, as well as combined tension-torsion (both proportional and non-proportional) 

loadings will be considered and compared to experimental results. The finite-element mesh that 

will be used to simulate the thin-walled tube is shown in Figure 3(a), the texture to be used is 

shown in Figure 3(b). See Appendix II for the input file for the thin-walled tube.

Figure 3: The finite-element mesh to be used in the future simulation of a textured thin-walled NiTi tube is shown in 
(a). The mesh contains 8,000 elements and is 25 mm long. The pole figure showing the strong [111] fiber texture 
that will be used in the tube simulation is shown in (b).

Tension

Compression

(a) (b)
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